Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Bioinform ; 20(3)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602733

RESUMO

With the rapid growth of massively parallel sequencing technologies, still more laboratories are utilising sequenced DNA fragments for genomic analyses. Interpretation of sequencing data is, however, strongly dependent on bioinformatics processing, which is often too demanding for clinicians and researchers without a computational background. Another problem represents the reproducibility of computational analyses across separated computational centres with inconsistent versions of installed libraries and bioinformatics tools. We propose an easily extensible set of computational pipelines, called SnakeLines, for processing sequencing reads; including mapping, assembly, variant calling, viral identification, transcriptomics, and metagenomics analysis. Individual steps of an analysis, along with methods and their parameters can be readily modified in a single configuration file. Provided pipelines are embedded in virtual environments that ensure isolation of required resources from the host operating system, rapid deployment, and reproducibility of analysis across different Unix-based platforms. SnakeLines is a powerful framework for the automation of bioinformatics analyses, with emphasis on a simple set-up, modifications, extensibility, and reproducibility. The framework is already routinely used in various research projects and their applications, especially in the Slovak national surveillance of SARS-CoV-2.


Assuntos
Genômica , Software , Reprodutibilidade dos Testes , Genômica/métodos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Microorganisms ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374901

RESUMO

Antibiotic resistance is becoming a common problem in medicine, food, and industry, with multidrug-resistant bacterial strains occurring in all regions. One of the possible future solutions is the use of bacteriophages. Phages are the most abundant form of life in the biosphere, so we can highly likely purify a specific phage against each target bacterium. The identification and consistent characterization of individual phages was a common form of phage work and included determining bacteriophages' host-specificity. With the advent of new modern sequencing methods, there was a problem with the detailed characterization of phages in the environment identified by metagenome analysis. The solution to this problem may be to use a bioinformatic approach in the form of prediction software capable of determining a bacterial host based on the phage whole-genome sequence. The result of our research is the machine learning algorithm-based tool called PHERI. PHERI predicts the suitable bacterial host genus for the purification of individual viruses from different samples. In addition, it can identify and highlight protein sequences that are important for host selection.

3.
BMC Bioinformatics ; 23(1): 551, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536300

RESUMO

BACKGROUND: The genomes of SARS-CoV-2 are classified into variants, some of which are monitored as variants of concern (e.g. the Delta variant B.1.617.2 or Omicron variant B.1.1.529). Proportions of these variants circulating in a human population are typically estimated by large-scale sequencing of individual patient samples. Sequencing a mixture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective alternative, but requires methods for estimating variant proportions in a mixed sample. RESULTS: We propose a new method based on a probabilistic model of sequencing reads, capturing sequence diversity present within individual variants, as well as sequencing errors. The algorithm is implemented in an open source Python program called VirPool. We evaluate the accuracy of VirPool on several simulated and real sequencing data sets from both Illumina and nanopore sequencing platforms, including wastewater samples from Austria and France monitoring the onset of the Alpha variant. CONCLUSIONS: VirPool is a versatile tool for wastewater and other mixed-sample analysis that can handle both short- and long-read sequencing data. Our approach does not require pre-selection of characteristic mutations for variant profiles, it is able to use the entire length of reads instead of just the most informative positions, and can also capture haplotype dependencies within a single read.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , RNA Viral , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia
4.
Curr Genet ; 65(2): 539-560, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30456648

RESUMO

The yeast Magnusiomyces capitatus is an opportunistic human pathogen causing rare yet severe infections, especially in patients with hematological malignancies. Here, we report the 20.2 megabase genome sequence of an environmental strain of this species as well as the genome sequences of eight additional isolates from human and animal sources providing an insight into intraspecies variation. The distribution of single-nucleotide variants is indicative of genetic recombination events, supporting evidence for sexual reproduction in this heterothallic yeast. Using RNAseq-aided annotation, we identified genes for 6518 proteins including several expanded families such as kexin proteases and Hsp70 molecular chaperones. Several of these families are potentially associated with the ability of M. capitatus to infect and colonize humans. For the purpose of comparative analysis, we also determined the genome sequence of a closely related yeast, Magnusiomyces ingens. The genome sequences of M. capitatus and M. ingens exhibit many distinct features and represent a basis for further comparative and functional studies.


Assuntos
Genoma Fúngico , Genômica , Micoses/microbiologia , Infecções Oportunistas/microbiologia , Saccharomycetales/genética , Antifúngicos/farmacologia , Biologia Computacional/métodos , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Família Multigênica , Fenótipo , Filogenia , Recombinação Genética , Saccharomycetales/classificação , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/patogenicidade , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...